4.6 mm.). It therefore appears that approximately 64% of the original non-condensable product was hydrogen. 0.825 mmole of water was added to the residue. On warming to room temperature the black solid began to turn white. The mixture was allowed to stand at room temperature for three weeks. The only volatile product obtained by distilling at -78° was NH₄ (0.21 mmole; vapor pressure at -80° found 37 mm., lit. value²¹ 39 mm.).

On rapid heating above 200° BH₂CN often decomposed with explosive violence.

Results and Discussion

Diborane reacts with silyl cyanides at low temperatures according to the general equation

 $2R_{3}SiCN + B_{2}H_{6} \longrightarrow 2R_{3}SiCN \cdot BH_{3}$ (12)

where R = H or CH_3 . Available chemical evidence indicates that a borine adduct is formed. This is suggested by the reactions of $(CH_3)_3SiCN \cdot BH_3$ with HCl and $(CH_3)_3N$ as given in equations 7, 8 and 9.

Of considerable interest is the irreversible thermal decomposition of the adducts to the corresponding silane and a solid whose composition corresponds to BH_2CN , *viz*.

 $R_3SiCN \cdot BH_2 \longrightarrow R_3SiH + BH_2CN$ (13)

The fact that silicon has available vacant 3d or-

bitals would suggest that a transfer of hydrogen from the boron to the silicon could occur readily by the means of an intermediate complex of the type

$R_{3}SiCNBH_{2}$ \vdots H H H H $H_{2}BNCSiR_{3}$

followed by the elimination of silane. This is consistent with the observation that hydrogen migration from the boron occurs more readily with the silicion derivatives than with the carbon analogs, as evidenced by the fact that some unchanged CH₃CN and B₂H₆ can be obtained on heating CH₃CN·BH₃. Since the B-H hydrogen can presumably form a linkage more readily to the silicon in an intermediate complex than to the carbon of the CN group, it is understandable why the H migrates to the Si and not to the carbon as is the case in the formation of $(CH_3CH_2NBH)_x$ from CH₃CN·BH₃. Reduction of the cyanide carbon only occurs on heating BH₂CN to higher temperatures.

Philadelphia, Pa. and Chicago, Ill.

[Contribution No. 549 from the Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company]

B¹¹ Magnetic Resonance Study of Boron Compounds

By W. D. Phillips, H. C. Miller and E. L. Muetterties Received April 17, 1959

 B^{11} chemical shifts are presented for representative examples of most classes of boron-containing compounds. B^{11} -H¹ coupling constants are given for the boron hydrides and borane adducts. Some qualitative conclusions regarding bonding in these compounds are derived from observed chemical shifts and coupling constants. Temperature dependences of the B^{11} spectra of $B_2H_5 \cdot N(CH_2)_2$ and $B_{10}H_{14}$ are presented and discussed.

Introduction

The B¹¹ magnetic resonance spectra of several boron-containing compounds already have been reported¹⁻¹⁰ and discussed, usually in connection with proofs of structure. However, with the exception of the work of Onak, *et al.*,¹⁰ no systematic study of the nuclear magnetic resonances of this important class of compounds has been made. In the present study, boron chemical shifts and B¹¹-H¹ coupling constants for most types of boron-containing compounds are given, from which some qualitative conclusions regarding electronic struc-

(1) R. A. Ogg, Jr., J. Chem. Phys., 22, 1933 (1954).

(2) J. N. Shoolery, Disc. Faraday Soc., 19, 215 (1955).

(3) R. Schaeffer, J. N. Shoolery and R. Jones, THIS JOURNAL, 79, 4606 (1957).

(4) R. Schaeffer, J. N. Shoolery and R. Jones, *ibid.*, 80, 2670 (1958).

(5) B. Siegel, J. L. Mack, J. U. Lowe, Jr., and J. Gallaghan, *ibid.*, 80, 4523 (1958).

(6) R. Schaeffer, paper presented before the Division of Inorganic Chemistry, National Meeting of the A.C.S., San Francisco, California. April, 1958.

(7) R. E. Williams and I. Shapiro, J. Chem. Phys., 29, 677 (1958).

(8) A. H. Silver and P. J. Bray, ibid., 29, 984 (1958).

(9) R. E. Williams, S. G. Gibbins and 1. Shapiro. *ibid.*, **30**, 320, 333 (1959).

(10) T. P. Onak, H. Landesman, R. E. Williams and I. Shapiro, paper presented before the Division of Inorganic Chemistry, National Meeting of the A.C.S., Boston, Mass., April, 1959. tures are made. In addition, some temperature dependences of the B^{11} spectra of $B_{10}H_{14}$ and B_2H_{δ} . $N(CH_3)_2$ are reported and discussed.

Results and Discussion

I. B¹¹ Chemical Shifts.—An example of a B¹¹ magnetic resonance spectrum is that of B_2H_5 ·N- $(CH_8)_2$ shown in Fig. 1. The three main triplet components centered around 237, 367 and 497 c.p.s., arise from nuclear spin coupling between boron atoms and the two "terminal" hydrogen atoms bonded to each boron. The single "bridge" hydrogen atom splits each of the triplet components into doublets of spacing 29 c.p.s. Because of the low nuclear moment and probably weak coupling to the B11 nuclei, the "bridge" N¹⁴ nucleus with a spin of I = 1 only contributes to the breadth of the B¹¹ resonance through spin-spin coupling. The B^{11} nucleus has a nuclear spin of 3/2 and a nonzero electric quadrupole moment; and in general, because of quadrupole relaxation effects, it exhibits resonance line widths considerably greater than those observed for hydrogen and fluorine. For this reason, coupling constants between boron and hydrogen separated by more than one bond length have not been observed. Indeed line widths of boron resonances are such that only in a few in-

TABLE I

вu	CHEMICAL	SHIFTS	AND	Bir-Hi	Spin-spin	SPLITTINGS	IN		
Boron Compounds									

	Нс – Нв	
Compound	$^{H_{R}}_{\times 10^{6}}$	Јв-н (c.p.s.) Coup. constant
B(CH ₃) ₃	-68.2	
$B(C_2H_b)_b$	-66.6	
C ₄ H ₅ BCl ₂	-35.9	
BF ₁	+ 6.6	
BCl	-29.2	
BBr _s	-22.7	
BI	+23.3	
C ₆ H ₅ B(OH) ₂ (in pyridine)	-15.2	
C ₄ H ₉ B(OH) ₂ (in acetone)	-14.3	
$C_{4}H_{5}B(OC_{2}H_{5})_{2}$	-10.4	
H CH₂ ∠B—N∖		
H ₂ CN BH	-14.3	134
B-N H CH		
H H BN		
ни вн	-12 3	136
	12.0	100
H H		
$B(N(C_2H_5)_2]_3$	-12.9	
B(OCH ₂) ₂	0	
B(OC ₂ H ₅) ₃	+ 0.6	
$B(O-n-C_3H_7)_3$	+ 0.5	
$B(O-n-C_4H_9)_3$	- 0.1	
H, H, H		
$B \langle B \rangle B \langle B \rangle$	+ 0.5	137 (terminal)
		48 (bridge)
	+36.7	130 (terminal)
H N H	1 0011	29 (bridge)
$CH_1 CH_3$		
H , N , H		
$B \langle B \rangle B \langle B \rangle$	+14.5	116
сн, сн,		
O·BH-	+19.0	103
N·BH ₃	+31.4	90
(CH ₃) ₂ NH·BH ₃	+32.8	94
(CH₃)₃N·BH₃	+24.9	97
(CH ₃) ₂ PH·BH ₃	+55.6	96
NaBC ₆ H ₄ (in H ₂ O)	+16.1	
NaB(OCH ₃) ₄ (in CH ₃ OH)	+15.2	
Al(BH ₄) ₂	+55.1	86
NaBH ₄ (in 0.1 N NaOH)	+61.0	81
LiB(C≡CC ₆ H ₅) ₄	+49.4	

stances are splittings between B^{11} and directly "bridged" hydrogen atoms observed. Coupling constants between B^{11} and "bridge" hydrogen atoms appear to be only 1/2 to 1/5 as great as those between B^{11} and "terminal" hydrogen atoms.

Chemical shifts are presented for several classes of boron compounds in Table I. The 130 p.p.m. range of chemical shifts for B^{11} is greater than the

Fig. 1.—B¹¹ resonance of B_2H_{δ} ·N(CH₁)₂ (-10°); 10 Mc./ sec.; ref. B(OCH₁)₃.

20 p.p.m. for H¹ ¹¹ and less than the 300 p.p.m. for F¹⁹ ¹² and P³¹ ¹³

Saika and Slichter¹⁴ treated F¹⁹ chemical shifts in terms of a paramagnetic shift arising from the difference in electron occupancy of the bonding p_z and non-bonding p_x and p_y orbitals. Attempts have been made to correlate P³¹ chemical shifts on a similar basis.^{18,15}

Qualitatively, the major features of the B^{11} chemical shifts can be accounted for on the basis of such a "paramagnetic shift." The extreme low field resonance for the compounds listed in Table I is observed for $B(CH_3)_3$, and the high field resonance, for BH_4^- . Neglecting hyperconjugation, the bonding hybrid of boron in $B(CH_3)_3$ should be sp^2 with a vacant p_2 orbital; the bonding hybrid of boron in BH_4^- should be sp^3 with full tetrahedral symmetry about boron. If such an effect dominates B^{11} chemical shifts, all B^{11} resonances would be expected to fall between those for $B(CH_3)_3$ and BH_4^- . As is seen from Tables I, II and III,

TABLE I	I
---------	---

B¹¹ RESONANCES OF BORON FLUORIDES

Compound	$B^{11}\left(\frac{Hc-HR}{HR}\times 10^{6}\right)$
BF3	+ 6.6
O·BF ₃	+19.0
$NH_{2} \cdot BF_{1} (H_{2}O)$	+20.2
$(CH_8)_{1}N \cdot BF_{1} (C_{0}H_{0}-CH_{2}OH)$	+18.6
$T1BF_{4}(H_{2}O)$	+18.8
$AgBF_{4}(H_{2}O)$	+20.3
$(C_2H_5)_2O \cdot BF_3$	+18.2
CH ₃ OH·BF ₃	+19.1
H,BO,F,	+18.7

such is the case for all B^{11} resonances of this study with the exception of the apex boron atom of B_bH_9 . This trend also has been noted by Onak, *et al.*,¹⁰ in their survey of B^{11} resonances. The B^{11} resonances of the BH_3 adducts with ethers and amines are consistent with this interpretation in that the reduced paramagnetic shift observed for boron in these compounds reflects presumably partial electron occupation of the boron p_z orbital as the result of donation of lone pair electrons from the oxygen and nitrogen atoms. Adduct formation is accompanied by a change of boron hybridization,

(11) L. H. Meyer, A. Saika and H. S. Gutowsky, THIS JOURNAL, 75, 4567 (1953).

(12) H. S. Gutowsky, D. W. McCall and C. P. Slichter, J. Chem. Phys., 21, 279 (1953).

(13) N. Muller, P. C. Lauterbur and J. Goldenson, THIS JOURNAL, 78, 3557 (1956).

(14) A. Saika and C. P. Slichter, J. Chem. Phys., 22, 26 (1954).

(15) J. R. Van Wazer, C. F. Callis, J. N. Shoolery and R. C. Jones, THIS JOURNAL, 78, 5715 (1956).

TAPES III							
B ¹¹ Resonances of Boron Hydrides							
Compound	$\mathbb{B}^{11}\left(\frac{Hc}{H}\right)$	$\frac{HR}{R} \times 10^6$	<i>Ј</i> в-н ((c.p.s.			
H B H B	+ ().5	137	, 48			
H/ 'H/ 'H							
	+36.7		130, 29				
CH, CH,							
$B_{3}H_{7} \cdot O(C_{2}H_{5})_{2}$	+2	31 ± 5					
NaB ₈ H ₈ (in H ₂ O)	+4	32					
B_4H_{10}	BH_2	BH	BH_2	BH			
	+25.0	+59.9	132	156			
B_5H_9	base	$a \mathbf{p} \mathbf{e} \mathbf{x}$	base	apex			
	+30.8	+69.6	168	176			
$B_{10}H_{14}$	+6.9, +19	.5, +53.9	124, 12	8, 159			
$B_{10}H_{12}I_2$	+4.0, +17	136, 137					
$B_{5}H_{11}$	-16.2, +0	134, 162, 1 42°					
9 Data taken from	rof 2						

TARE III

Data taken from ref. 3.

presumably from sp^2 to sp^3 , which also would be expected to reduce the paramagnetic shift.

The B¹¹ resonances of BH_4^- and $B(C = CC_6H_5)_4^$ are similar; however, the resonance for $B(C_6H_5)_4^$ exhibits a paramagnetic shift of 45 p.p.m. relative to BH_4^- . That such a shift is not attributable to the Pople ring current¹⁶ observed in aromatic systems is shown by comparison of the B11 resonances of $C_4H_9B(OH)_2$ and $C_6H_5B(OH)_2$ in which substitution of phenyl for *n*-butyl on boron produces a paramagnetic shift of only 0.9 p.p.m. Also, the magnitude of the $BH_4^--B(C_6H_5)_4^-$ shift is far too large to be accounted for on the basis of a ring current shift. The large shift might largely reflect the electronegativity differences between C_6H_5 and H⁻. The chemical shifts of $B(C_6H_5)_4^-$ and BF_4 – are almost identical.

The chemical shifts for boron in BCl₃, BBr₃ and BI₃ parallel the electronegativities of the halogens. However, the boron chemical shift for BF₃ is between those of BBr3 and BI3. A possible explanation, first proposed by Onak, et al., ¹⁰ of this apparent anomaly is significant "back coördination" to the boron p_z orbital from the non-bonding electrons of the fluorine atoms. The n.m.r. results and interpretations are consistent with arguments for back coördination based on the shortening of B-X bond distances in BX3^{17a} and the conclusion of Brown and Holmes, ^{17b} among others, based on the observation that BF₃ is a weaker acceptor molecule than BBr₃ and BCl₃, at least with respect to pyridine and to nitrobenzene. The borate esters have resonances similarly shifted from the low field resonance position expected solely on electronegativity considerations. In view of this shift and since the esters do display a rather low order of acceptor character, it would appear that back coordination from the non-bonding electrons of the oxygen atoms to the boron pz orbital is present to a significant degree in the esters.

II. Resonances of BF_3 and its Adducts.— B^{11} resonances of BF_3 and BF_1^- and some adducts of

(16) J. A. Pople, Proc. Roy. Soc. (London), A239, 550 (1957).

 (17) (a) N. V. Sidgwick, "The Chemical Elements and Their Compounds," Vol. I, Oxford Univ. Press. London. 1950, p. 392: (b) H. C. Brown and R. R. Holmes, THIS JOURNAL, 78, 2172 (1956).

 BF_3 with ethers and amines are presented in Table II. The B^{11} resonance of BF_4^- exhibits a paramagnetic shift of about 41 p.p.m. relative to that of BH_4^- . Since both BF_4^- and BH_4^- possess tetrahedral symmetries, B¹¹ resonances of the two species would be expected to be the same if orbital paramagnetism were the only term affecting these chemical shifts. The chemical shifts between the two species is best ascribed to effects of the highly electronegative fluorine atoms in reducing the diamagnetic shielding about boron in BF4-, and so giving rise to a low field shift of the BF₄- resonance relative to that of BH_4^- .

The boron resonances of the BF3 adducts with ethers and amines are essentially coincident with that of BF_4^- . This suggests that the electronic configuration around the boron atom in BF_4^- and in the adducts are similar. It would appear from these results that the boron is tetrahedrally bonded in these adducts¹⁸ (sp³ hybrid) and that bonding between adduct components could be represented as $F_{3}B^{-}-N^{+}R_{3}$.

III. B¹¹-H¹ Coupling Constants.--Gutowsky, McCall and Slichter¹² have suggested that magnitudes of coupling constants between hydrogen and other directly bonded nuclei should depend significantly on the fractional s-character of the bonding hybrid of the directly bonded nucleus. Thus, coupling constants between hydrogen and sp² boron should be larger than those between hydrogen and sp³ boron.

The results of Table I suggest that such a trend exists in the boron hydrides. The bonding hybrid of boron in BH_4^- is sp³, and for this compound a $B^{11}-H^1$ coupling constant of 81 c.p.s. is observed. The structure^{19,20} and electronic spectrum²¹ of borazole indicate that the electronic configuration of boron in this molecule may be described by pzsp², with the B–H σ -bond consisting of a hydrogen ls orbital and a boron sp² hybrid orbital. For borazole the B¹¹-H¹ coupling constant is 136 c.p.s., and for N-trimethylborazole, 134 c.p.s. B¹¹-H¹ coupling constants found in BH₃ adducts with ethers and amines (Table I) lie between the 136 c.p.s. value for borazole and the 81 c.p.s. value for BH_4^{-} . Configurations and boron quadrupole coupling constants in BH₃ adducts have been interpreted²² in terms of boron hybridization intermediate be-tween sp^2 and sp^3 . The magnitudes of $B^{11}-H^1$ coupling constants of BH₃ adducts as interpreted in terms of the s-character of the boron bonding hybrid are seen to be qualitatively consistent with conclusions regarding boron hybridization as derived from other studies.

IV. Resonances of Boron Hydrides.-B11 chemical shifts and B¹¹-H¹ coupling constants for several boron hybrides are given in Table III. The spectra of all except B_2H_5 . N(CH₃)₂ and $B_3H_8^$ have been previously reported and dis-

(18) X-Ray diffraction studies have, in fact, shown boron to be nearly tetrahedral in several boron halide complexes, e.g., <FBF and <NBF are 107 and 112°, respectively, in (CHs)3NBF3 (S. Geller and J. L. Hoard, Acta Cryst., 4, 399 (1951)).

(19) S. Bauer, THIS JOURNAL, 60, 524 (1938).
(20) A. Stock and R. Wierl, Z. anorg. Chem., 203, 228 (1931).

(21) C. C. J. Roothaan and R. S. Mulliken, J. Chem. Phys., 16, 118 (1948).

(22) T. P. Das. ibid., 27, 1 (1957).

Sept. 5, 1959

cussed, 1-3,7.9,10 although in several cases calibrations were not given. In most instances, assignment^{1,2} of resonances in these compounds to the proper boron atoms has followed directly from analysis of resonance intensity and multiplet structure. For B₁₀H₁₄^{3,7} and B₅H₁₁^{3,9} some ambiguity exists in analysis of the spectra in terms of the structures deduced from X-ray studies, and assignment has been made on the basis of an assumed correlation between the resonance field and calculated electron densities at boron atoms. However, as Schaeffer, Shoolery and Jones³ have pointed out and as was suggested by the previous discussion of chemical shifts in this study, no good theoretical or experimental reasons exist for believing boron chemical shifts should be dominated by diamagnetic shieldings

Coupling constants between boron and "conventional," *i.e.*, non-bridged, hydrogen atoms in the boron hydrides vary between 129 and 176 c.p.s. (Table III). If $B^{11}-H^1$ coupling constants do reflect the s-character of the boron bonding hybrid as was suggested in the previous section, boron hybrids in the boron hydrides would appear to vary between the equivalents of sp² and sp hybrids. However, in view of the complexity of the electronic structures of the boron hydrides and in the absence of a quantitative treatment of B-H coupling constants and boron chemical shifts, any conclusions regarding the electronic structures of boron hydrides as derived from magnetic resonance data must be accepted with reservation.

V. Spectra of $B_3H_8^-$ and of $B_3H_7 O(C_2H_5)_2$.— The B¹¹ magnetic resonance spectrum of an ether solution of NaB₃H₈ is presented in Fig. 2. The

Fig. 2.-B¹¹ resonance of B₃H₃⁻ in ether.

spectrum appears to consist of seven components with a separation between adjacent peaks of 32 c.p.s. Quantitative intensity measurements are rendered difficult by the breadth and close spacing of the lines, but the intensities are approximately in the ratios to be expected for six hydrogen atoms coupled equally or nearly equally to each of three equivalent boron atoms. Similarly, the B¹¹ spectrum of $B_3H_7 \cdot O(C_2H_5)_2$, while more diffuse than that of $B_3H_8^-$, appears to be a symmetrical sextuplet of spacing about 30 c.p.s.

A structure of $B_3H_8^-$ consistent with this spectrum is one of D_{3h} symmetry, shown in Fig. 3 in which each of three equivalent boron atoms is bonded to six "bridge" hydrogen atoms. Each of the type II hydrogen atoms would be "bridged" to three boron atoms, and the molecule would contain no "conventional" B-H bonds. The B_3H_7 . $O(C_2H_5)_2$ structure would be analogous; a type

Fig. 3.—Possible structure of B₃H₈⁻.

II hydrogen would be replaced by the oxygen atom of the ether molecule. R. W. Parry²³ has pointed out that this structure type is inconsistent with most recent X-ray work on $B_3H_7\cdot N(CH_3)_3$ which indicates that this molecule does not possess a threefold symmetry axis in the solid state.

W. N. Lipscomb²⁴ has suggested that the B¹¹ spectrum of $B_3H_8^-$ may actually consist of nine lines, with the outermost peaks being too weak for observation. Such an interpretation would be consistent with a more conventional structure for the anion, one containing non-equivalent boron atoms and conventional B-H hydrogen atoms as well as bridged hydrogen atoms, but with the equivalence of boron and hydrogen being achieved by some intramolecular tunnelling process. Such an interpretation previously has been invoked by Ogg and Ray²⁵ to account for the apparent equivalence of the hydrogen atoms of A1(BH₄)₃.

The H¹ spectrum of NaB₃H₈ in D₂O is rather diffuse but contains a discernible fine structure of spacing about 32 c.p.s. The B¹¹ spectrum of the molecule exhibited no detectible temperature dependence to -60° , nor did the H¹ spectrum to 90°. It would appear that spin saturation experiments and use of deuterium derivatives will be necessary before further progress can be made in unravelling the magnetic resonance spectrum of B₃H₈⁻.

VI. B¹¹ Temperature Dependence. a. B₂H₅·N-(CH₃)₂.—A temperature dependence has been found in the B¹¹ spectrum of B₂H₅·N(CH₃)₂ and is shown in Fig. 4. It is seen that, as the temperature is raised from -10 to 40° , the B¹¹ resonance is broadened and the doublet splittings almost eliminated. Such a temperature dependence is consistent with some rate process possible to the B₂H₅· N(CH₃)₂ molecule that results in H¹ exchange at a rate of about 10^{2} sec.⁻¹ at 40° . Cleavage of a bridge B-H bond could, through sequences partially diagrammed below, produce the observed temperature dependence. Identical spectral results would result through cleavage of the bridge

(23) Private communication.(24) Private communication.

(24) Frivate communication.
(25) R. A. Ogg, Jr., and J. D. Ray, Disc. Faraday Soc., 19, 215 (1955).

Fig. 4.—Temperature dependence of B^{11} resonance of B_2H_5 ·N[CH₄)₂; 10 mc./sec.; ref. B(OCH₃)₃.

 R_2N^- group to give an intermediate terminal R_2N group. Since this latter sequence also necessarily requires B-H bridge cleavages, the former sequence of only B-H bridge cleavage is the simpler but not necessarily the more probable of the two.²⁶ A quantum mechanical tunnelling similar to that proposed by Ogg and Ray^{26} for $Al(BH_4)_3$ and Lipscomb²⁴ for $B_3H_8^-$ could also account for the observed spectra. Studies at higher temperatures will be necessary to establish the kinetic process responsible for the observed temperature dependence.

b. $B_{10}H_{14}$.—A rather striking temperature dependence was noted in the B^{11} spectra of acetone solutions of $B_{10}H_{14}$. Room temperature B^{11} spectra of $B_{10}H_{14}$ dissolved in benzene and in acetone are shown in Fig. 5. While some controversy still exists regarding assignment of the B^{11} spectrum of $B_{10}H_{14}$, 2,3,7,9 it appears to be probable that the doublet centered around 539 c.p.s. arises from a pair of equivalent boron atoms, and those centered around 70 and 193 c.p.s. from two sets of equivalent or nearly equivalent boron atoms, each set consisting of four atoms. The intensity of the peak at 131 c.p.s. is considered to result from accidental overlap of components from the 70 and 193 c.p.s. doublets.

The room temperature B^{11} spectrum of $B_{16}H_{14}$ dissolved in benzene (Fig. 5) consists of three com-

(26) Bromodibutane and the alkylated diboranes have the substituent groups in terminal positions. The aminodiboranes are the only substituted diboranes in which the substituent group is known to be in a brldge position. although it is highly probable that phosphino- and alkanethiodiboranes have the substituent group in the bridge position.

Fig. 5.—B¹¹ resonance of B₁₀H₁₄ in (a) benzene, (b) acetone.

ponents of relative intensities 1:2:1 in the region between 0 and 262 c.p.s., consistent with the above interpretation of the spectrum. However, the B¹¹ spectrum of $B_{IC}H_{I4}$ dissolved in acetone is asymmetrical in this region, with the 256 c.p.s. resonance being much weaker than the 10 c.p.s. resonance. This asymmetry is increased at reduced temperature, with the 256 c.p.s. resonance nearly vanishing and the 10 c.p.s. resonance becoming as intense as the 131 c.p.s. resonance at -50° . Conversely, at about $+60^{\circ}$, the B¹¹ spectrum of $B_{10}H_{14}$ in acetone becomes essentially identical with that of the compound in benzene.

The temperature dependence of the B¹¹ spectrum of B₁₀H₁₄ in acetone suggests strong solvent-solute interaction. On the basis of this interpretation, the spectrum of B₁₀H₁₄ in benzene and in acetone at 60° would represent the non-associated molecule. The -50° spectrum of B₁₀H₁₄ in acetone would represent the B₁₀H₁₄/acetone complex. The main effect of B₁₀H₁₄-acetone complex formation then would be to cause the set of four boron atoms exhibiting a resonance at 193 c.p.s. in the non-complexed form to become accidentally equivalent, in the n.m.r. sense, to the set of four atoms at 70 c.p.s. If this interpretation is correct, it is interesting to note that the equilibrium is slow ($\tau >$

$B_{10}H_{14}$ + acetone $\implies B_{10}H_{14}$ ·acetone

 10^{-3} sec.), since separate rather than averaged resonances for complexed and non-complexed $B_{10}H_{14}$ are observed.

Experimental

Materials and Method.—The compounds examined in this study were either purchased from commercial sources or were prepared by literature procedures. In most instances, the materials were purified by standard methods.

The B¹¹ magnetic resonance spectra were obtained using a Varian high resolution n.m.r. spectrometer and electromagnet²⁷ at a frequency of 10 Mc. and a field of about 7.315 gauss. Spectra were calibrated relative to the boron resonance of B(OCH₂), using the side band technique.²⁸

Acknowledgments.—We are indebted to Dr. V. D. Aftandilian and to Dr. W. H. Knoth who furnished us with some of the compounds used in this study.

WILMINGTON, DELAWARE

(27) Varian Associates, Palo Alto, California.

(28) J. T. Arnold and M. E. Packard, J. Chem. Phys., 19, 6108 (1951).